IMPORTANCE OF A STATISTICAL ANALYSIS PLAN

Dr. Helen Purtill

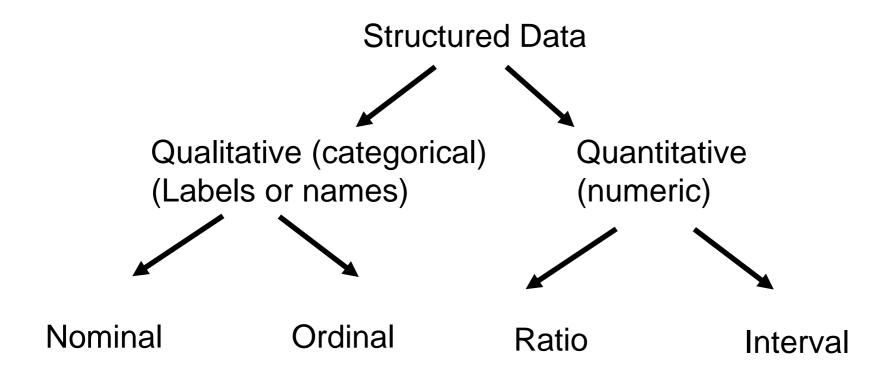
Overview

- Statistical analysis
- Beginning a statistical analysis plan
- Types of data
- Sample size considerations

Statistical analysis

Statistics is the **science** of collecting, analysing, presenting and interpreting data

Warning: Need to avoid "Rubbish in, Rubbish out!"

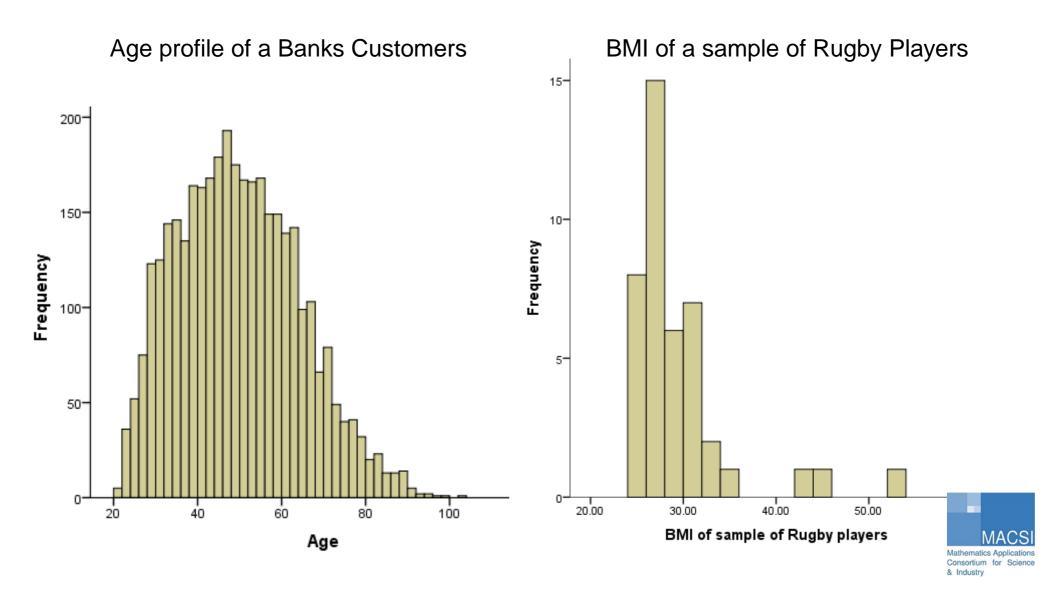


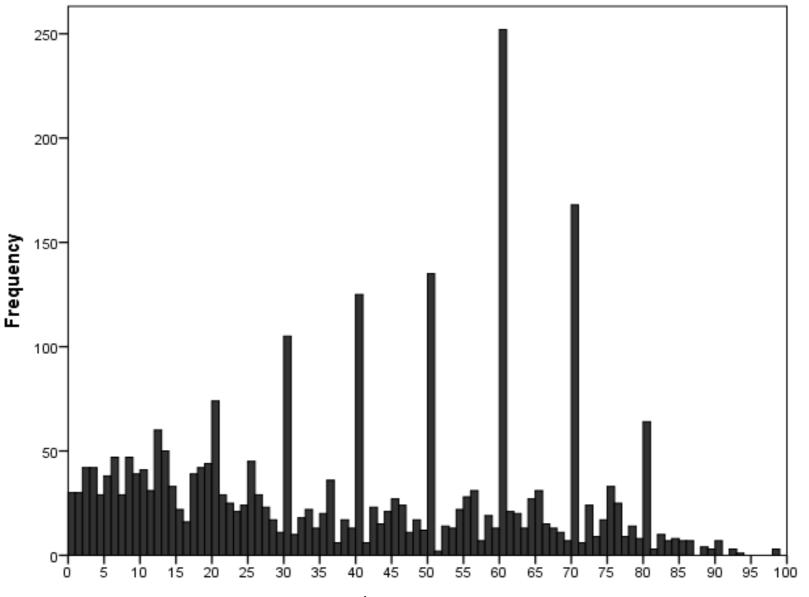
What data can look like....

1.00	1.00	1.00	20.17	.79	7.00	3.00	2	5.00
1.00	3.00	2.00	20.20	.65	5.00	3.00	1	4.00
1.00	3.00	2.00	20.45	.76	.00	3.00	2	5.00
1.00	3.00	1.00	20.06	.95	.00	3.00	3	5.00
1.00	3.00	1.00	20.15	.74	4.00	3.00	2	4.00
1.00	3.00	2.00	23.23	.71	.00	3.00	2	5.00
1.00	3.00	1.00	21.67	.73	.00	3.00	2	3.00
1.00	1.00	2.00	22.60	.75	.00	1.00	1	3.00
1.00	3.00	1.00	20.82	.73	.00	3.00	2	4.00
1.00	2.00	2.00	22.49	.74	4.00	3.00	2	3.00
1.00	3.00	1.00	19.49	.77	5.00	3.00	2	5.00
1.00	1.00	1.00	22.41	.75	2.00	3.00	2	3.00
1.00	3.00	2.00	21.33	.84	.00	3.00	3	4.00
1.00	1.00	1.00	24.09	.84	5.00	1.00	1	3.00
1.00	3.00	2.00	23.23	.73	5.00	3.00	1	1.00
1.00	3.00	1.00	20.32	.80	.00	3.00	1	1.00
1.00	1.00	2.00	19.26	.77	1.00	3.00	2	1.00
1.00	3.00	1.00	20.20	.76	.00	3.00	2	5.00
1.00	3.00	1.00	22.57	.75	.00	3.00	1	2.00
1.00	3.00	2.00	18.85	.74	.00	3.00	1	4.00
1.00	3.00	1.00	21.97	.80	.00	3.00	2	5.00
1.00	3.00	1.00	21.89	.73	1.00	2.00	1	4.00

Methods of analysis are data driven...

Exploratory Data Analysis (Visualisation):


Categorical variables are summarised by number and percentage in each group and graphically by bar or pie charts.


Quantitative variables require a visualisation (graph) such as a histogram to determine the shape of the distribution...

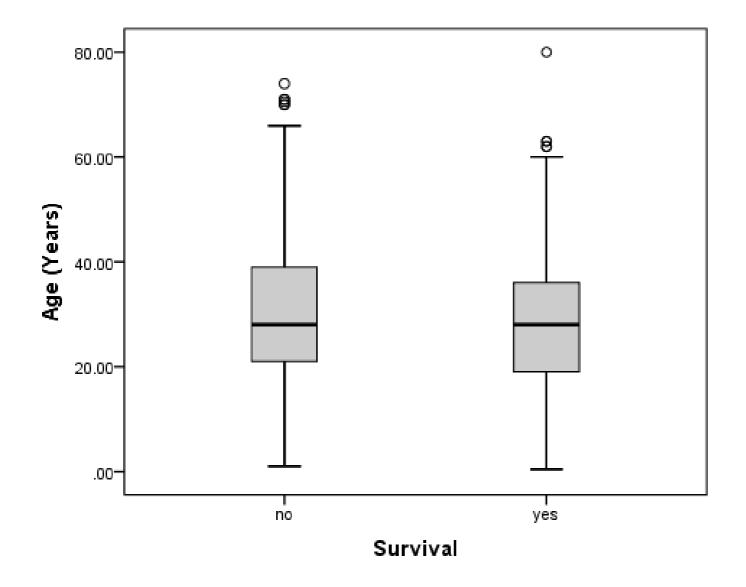
- if **symmetric** summarise using **mean** and **standard deviation**
- if **skewed** summarise using **median** and **interquartile** range

Note: Check for input errors by doing a table of **max**, **min** values across all variables.

Examples of histograms:

Age of residents of an 18th century Limerick Workhouse "Pauper Limerick" by Dr. David Fleming & Dr. John Logan

Titanic Dataset.... www.kaggle.com


Passenger	Survived	Pclass	Gender	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	0	3	1	22.00	1	0	A/5 21171	7.2500		3
2	1	1	2	38.00	1	0	PC 17599	71.2833	C85	1
3	1	3	2	26.00	0	0	STON/O2.	7.9250		3
4	1	1	2	35.00	1	0	113803	53.1000	C123	3
5	0	3	1	35.00	0	0	373450	8.0500		3
6	0	3	1	#NULL!	0	0	330877	8.4583		2
7	0	1	1	54.00	0	0	17463	51.8625	E46	3
8	0	3	1	2.00	3	1	349909	21.0750		3
9	1	3	2	27.00	0	2	347742	11.1333		3
10	1	2	2	14.00	1	0	237736	30.0708		1
11	1	3	2	4.00	1	1	PP 9549	16.7000	G6	3
12	1	1	2	58.00	0	0	113783	26.5500	C103	3
13	0	3	1	20.00	0	0	A/5. 2151	8.0500		3
14	0	3	1	39.00	1	5	347082	31.2750		3
15	0	3	2	14.00	0	0	350406	7.8542		3
16	1	2	2	55.00	0	0	248706	16.0000		3
17	0	3	1	2.00	4	1	382652	29.1250		2
18	1	2	1	#NULL!	0	0	244373	13.0000		3
19	0	3	2	31.00	1	0	345763	18.0000		3
20	1	3	2	#NULL!	0	0	2649	7.2250		1
21	0	2	1	35.00	0	0	239865	26.0000		3

A sample of 891 passenger records from the HMS titanic that sank in 1912 reveal the following relationship between survival and passenger class (*Data from www.kaggle.com*).

	Passenger class					
		First	Second	Third	Total	
Survival.	no	80 37.0 %	97 52.7%	372 75.8%	549	
Survival	yes	136 63.0 %	87 47.3%	119 24.2 %	342	
Total		216	184	491	891	

Is there an age difference between those who did and did not survive?

Female passengers:

		P			
		First	Second	Third	Total
	no	3	6	72	81
Curviyal		3.2%	7.9%	50.0%	
Survival	yes	91	70	72	233
		96.8%	92.1%	50.0%	
	Total	94	76	144	314

Male passengers:

		Passo			
		First	Second	Third	Total
	no	77	91	300	468
Survival		63.1%	84.3%	86.5%	
Survivai	yes	45	17	47	109
		36.9%	15.7%	13.5%	
	Total	122	108	347	577

Statistical tests and modelling...

- Between group tests (e.g. t-test, chi-square test)
- Correlation (e.g. Pearson, Spearman)
- Linear regression
- Logistic regression
- Cluster analysis, Factor analysis, Classifcation trees etc....

The beginning of a statistical analysis plan....

What is the research question?

What is the primary outcome measure of interest?

What is the population?

What study design is needed?

What kind of data is needed?

What sample size is needed?

..... then the rest (i.e. the analysis) is easy! ©

The Statistical Analysis Plan needs to consider the following...

- Would you like to compare groups? Then you'll need to have large enough number in each group to make this possible.
- How many outcomes would you like to test?
- Would you like to fit a statistical model to the data (e.g. a linear regression model)?
 - how many control variables do you need?
 - a rule of thumb for a multiple linear regression model for the sample size is 50 + 8k, where k = number of variables in the model²

²Tabachnick, B.G., Fidell, L.S. and Ullman, J.B., 2007. *Using multivariate statistics* (Vol. 5). Boston, MA: Pearson.

Sample size considerations...

- Do you know the size of the **effect** (e.g. difference between two groups) that you'd like to be able to identify as significant?
- Do you have any idea of the variability of the outcome measure?
- Cohen's D can be a useful effect size to base a sample size around. Cohen's D = 0.5 is a moderate effect.

Example: A sample size of 64 in each group will have 80% power to detect a difference in means of 1 assuming that the common standard deviation is 2 using a two group t-test with a 0.050 two-sided significance level.³

³Using **nQuery** software by **Statistical Solutions (Cork)**.

A good Statistical Analysis Plan will inform....

- the research question
- the study design
- the sample size needed for the study
- the variables to be collected
- the methods of analysis

Recommended resource: SPSS Survival Manual by Julie Pallant

Thank you...